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smM#RY

Linearized theory for compressible unsteady flow is used to treat
the problem of a psrtial-span rectangular control surface, hinged at its
leading edge and mounted on a rectangular wing, oscillating in supersonic
flow. The motions of the wing-aileron configuration sxe assumed to consist
of vertical translation, pitching, and aileron rotation. The velocity
potentials for this configuration are’derived as power series in terms
of a frequency parameter to the fifth power of the frequency of oscill.a-
tion. Worn these potentials closed expressions for section force and
moment coefficients at any spanwise location we derived. The section
force and moment coefficients are employed in a particular flutter study

h in which the spanwise position of the aileron is varied.

●

INTRODUCTION

The problem of the oscillating rectangular wing in supersonic flow
has been investigated in several papers (refs. 1 to 4). In reference 1
the velocity potential was derived as a power series in terms of a fre-
quency psrsmeter for vertical translation and pitching oscillations, and
expressions for the aerodynamic derivatives to the third power of the
frequency were presented. The aerodynamic derivatives obtained in ref-
erence 2 were presented in the form of double integrals. Reference 3,
employing the Laplace transform, presented the disturbance velocity poten-
tial as a definite integral. This last result was used in reference 4
to derive the Complete series expansion in terms of frequency for the
disturbance velocity potential from which aerodynamic derivatives of the
kind given in reference 1 were obtained to the seventh power of the
frequency.

The problem of a rectangular control surface mounted on a rectangular
wing, which is a logical extension of the wing problem, is the subject of

% the present paper. This configuration (herein designated as a rectangular
‘*wing-aileron”)has been considered for steady flow in a number of papers,
for example, reference 5. The unsteaiiy-flmwproblem was considered in

4
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reference 6 for a control surface
outboard edge at the wing tip and

NACA TN 3644

●

hinged at its leading edge, with the
the gapbetween it and the wing at the r .

inboard edge assixnedto be sealed. The restits of reference 6, expressions -
for forces and moments on spanwise stripslare presented in the form of
double integrals. A later paper, reference 7, applied these results to
obtain expressions for total aerodynamic derivatives for a wing-aileron
combination. .—

In the forms presented the results of references 6 and ~ we not
—

particularly useful in flutter analyses employing beam theory, since
this type of analysis calls for spanwise distributions of air forces and

--

moments. In the present paper the configuration of reference 6 is con-
sidered and, by extending the methods of references 1 and 4 to include
a control surface, the expressions are obtained for the section lift.and
moment coefficients at any spanwise station of the wing-aileron configura-
tion from power-series expsmsions of the velocity potential in terms of
a frequency parameter. The expressions presented include terms to l+e
fifth power of the frequency of oscillation. To gain some insight into

—

the overall effect of aspect ratio upon the forces and moments, expres-
sions sre also given for the total forces tid moments of the wing-aileron
combination.

The spenwise variation of the lift and moment coefficients developed 1
in the present paper sre shown for a set @ conditions. The section force
and moment coefficients are applied for a single Mach number to illustrate
the flutter characteristicsof some configtiationshaving partial-span *

ailerons for three degrees of freedom. A comparison is provided with
similar calculations involving two degrees “offreedom.

A

b

c

Fn(x,y) =

sYmoLs —

aspect ratio of wing

semichord of wing —

speed of sound in undisturbed medium

[

/“‘1#p16in-1 g dx
Fn” = ~
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verticsl displacement of axis of rotation, positive downwsrd

the derivatives of

moment
axiB

moment

span

Bessel

of inertia of
per unit span

of inertia of

length

h, u, snd 5, respectively

wing-aileron combination about elastic
length

aileron about xl (hinge sxis) per unit

function of zero order (first kind)

reduced frequency, be/V

components of section force and moment coefficients
(i=l,2, . . . 6 as defined in

components of total force and moment
(i=l,2,. . . 6 as defined in

mass of wing-aileron combination per

Mach number, Vjc

eq. (26))

coefficients
eq. (33))

unit span length

aero.dynmnicsection moment on wing about wing wis of rotation,
positive leading edge up

total aerodynamic moment on wing about wiqg axis of rotation,
positive leading edge up

aerodynamic section moment on aileron about its hinge, positive
leading edge up

total aerodynamic moment on aileron about its hinge, positive
leading edge up

local pressure dtiference between upper and lower surfaces,
positive downward

—. -— -— —. . . ..-— .— ..— ..— ._ .._
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aero@mmic section normal force, positive downwsrd

total aerodynamic force on wing, positive downward

radius of gyration of wing-aileron combination referred to

reduced radius of gyration of aileron referred to
‘l; w

static moment of aileron per unit span length referred to Xl

time

flight velocity

verticel velocity at surface of wing

rectangular coordinates attached to wing moving in negative
x-direction

coordinate of wing axis of rotation +

coordinate’of aileron hinge G

- xl

‘3=1-X1

% location of center of gravity of wing-aileron combination
referred to ~

‘P
reduced location of center of gravity of aileron referred
to xl; S~/mb

Y1 spanwise location of inboard sileron tip

a angulsr displacement of wing about wing axis of rotation,
positive leading edge up

p=~~
#
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5 mm diwl~cement of aileron,
positive traildng edge down

K = scpb2/m

P density of the medium .

$ disturbance velocity potential

5

measured relative to a,

h subsidiary velocity potential associated with aileron position

$g subsidiary velocity potential associated with aileron motion

CD circular frequency of oscilhtion

/
~= M20 T@

% first natural bending frequency

% first natural torsion frequency

% natural rotational frequency of

ANALYSL5

of wing

of wing

aileron

Outline of I%oblem

Consider a thin, flat, rectangular wing-aileron configuration moving
at a constant supersonic velocity V, as shown in figure 1. The Mach lines
emanating from.the foremost &ints of the wing and aileron tips divide
the configuration into vsrious regions. The potentials for the various
regions of the wing delineated by the Mach lines from the wing-leading-
edge tips have been derived and discussed h several papers (refs. 1 to 4).
This paper will deal with the potentials for the various regions delineated
by the Mach lines from the aileron lesiking-edgetips. A restrictive con-
dition for the present treatment, similar to that employed for the treat-
ment of the rectangular wing in reference 1, is that the Mach line from
the foremost point of one aileron tip does not intereect the opposite tip.
ahead of the trailing edge.

A rectamgul.arcoordinate system x,y,z, moving uniformly with the
wing in the negative x-direction, is adopted so that the xy-plane is
coincident with the mean position of the wing, and the origin is taken
at the intersection of the wing leading edge and the wing tip. The out-
bosrd edge of the aileron is coincident with the wing tip (y= O), and
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the inboard edge (y = Y1) ~joti the wing proper. (This

tion is treated in ref. 6.) The aileron is hinged at its
and the gap at its inboard edge is assumed to be sealed.

NACATN 3644

.
ssme configura- —
leading edge,

s-

The wing-aileron combination is considered to be perfordng the
following types of small-smplittieharmonic oscillations with frequency U:
vertical translation h and pitching a about a spanwise axis ~. In
addition the aileron is allowed to perform a-Notational oscillation about
a spanwise axis xl. The vertical displacement at any chordtise point x

-—

of the wing-aileron is therefore

z = h+a(x- Xo) + 5(X - xl) (1)

where the 5 term vanishes for x < xl or y>yl. The normal velocity

at any point of the wing-aileron may then be_expressed as —

.
w=h+Va+&(x-~) i-v&4&(x-xl) (2)

L-

The velocity potential for the wing-aileron configurationmay be
expressed as the sum of separate effects due to position and velocity
of the configurationassociated with the individual terms In equation (2) s

as

(3)

The first three terms on the.right side of equation (3)apply to purely
wing oscillations snd were treated in power-series form in reference 1
to the third power of the frequency and in reference 4 to the seventh
power. The last two terms on the right side apply to control-surface
oscillations and will be treated in the following section.

Aileron Velocity Potentials

Consider the flow field of the aileron, fo~which @b ~d #~

are the velocity potentials. The field is di,,ded into three regions
(fig. 1): region I behind the outbosrd Mach line, region III within
the inbosrd Mach cone, and region II which is the remaining part of the

T

control surface. Expressions for the velocity potential in these various --
regions will now be.obtained. .- Wm
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Regions I and II.- In accordance with linearized theory the velocity
potential for regions I and 11 can be obtained directly from the velocity
potential of a semi-infinite rectangd.sr wing. This is because the aileron
is not affected by the p’resenceof the wing when the wing is at constant
zero angle of attack and is therefore essentially a wing itself.. The
boundsry-value problem for the semi-infinite rectangular wing was solved
by means of the Laplace transform @ reference 3. The transform of the
velocity potential was obtained in the form

where

,

(k)

and where the bar above w, @, and x denotes the La.placetransformation
of these terms with respect to x.

Employing the 5 and & components of equation (2) in equation (4)
and applying the inverse Laplace transform (pairs 55 and 84, pp. @8-299,
ref. 8) result in the following expressions for the aileron potentials ~b .

and @~ in regions I and II:

(5)
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&

r

where

M2U.)G=—

W2

(6)

Note that the upper limit of the second_integral,which is within
the brackets of equation (5),will vanish when x equals j3y. This
indicates that the second integral represents the correction to the
“purely supersonic” disturbance potential needed to compensate for the
flow around the wing or aileron tip. The first term is the purely super-
sonic disturbance potentialobtained in reference 9.

—.

The indicated integrations in equations (~) and (6) do not appear
to be obtainable in terms of known functions. For purposes of evaluatiofi,
however, these equations CM be expanded in a power series and terms can
be retained to any desired power of the frequency parameter fi. For
region 11, the region of “purely supersonic’ flow wherein x> py, equa-

tions (5) and (6),expandedto ‘b, yield —

(7)
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.

(8)

where

i~k 2 + ~) + ~(@4 -t’40P2 + 35) -‘=2 g2(2P2 + 3) + —fl(x) =x-T-
4&’#(* 9

‘= (@4 + 56p2+ 63)

5760M4

(9)

J
x

f2(x) = fl(x)dx (lo)
o

* Slld X2=X-X1. For region 1, the region of “mixed supersonic” flow,

equations (~) and (6)yield

(U)

(12)

“,. .
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where

{

~2

)[ 1‘d3x%2+(2f32-1)F4 +Al(x,y) =$ F1 - iZi3?2- —
(
XF2 + 132F3+ —

~2 12%!2

b

.

(

~k

[
— <(4p2 + 5)F2 - 1W4 + 2P2F5 -
48M4

1}30X44 + (%+ - 4P -i-3)F6

nX

[
z 5~(4~2 + 7)F2 -

960M4

(13)

Ap(x,y) = / Al(x,y)dx (14)
do

The functions fl(x), f2(x), Al(x,y),

seventh power of Z in reference 7 and
equations (13)and (14)

l-lx

and A2(x,y) were given to the

are repeated here to Z@. In

—

Fn(xjy) =
J /

&&
-- Xn-l sin-l. x

o

—

and

J
x

( )+Fn(x,y) = ~@+l - FHn+I
o

Further information regsmiing these Fn functions can be found in ref-

erences 1 and 4.

The above equations could’have been obtained from the equations of
references 1 ad 4 by substituting 5 for a, O for ~, and x2

●

for x. In other words, to obtain @a and ~~, the aileron in super-

sonic flow may be considered as a rectangular wing rotating about its P-
leading edge insofar as regions I and 11 sre concerned. —



Region III.- The problem of
region III may be complicated by

G tip of the aileron. The present
complication by assuming the’gap
as was done in reference 6.

IL

determining the velocity potential for
the existence of flow about the inboard
treatment of the problem avoids this
between aileron and wing to be sealed

The velocity potential for region III can be obtained from refer-
ence 9. In reference 9 the potential of a “mixed supersonic” region at
the tip of a rectsmgular wing in supersonic flow was considered. If
this region is assumed to be part of a “purely supersonic” region, an
approximation for the velocity poteritialin region III can be obtained.
Although the expression so obtained was an approximation for the velocity
potential in the tip region then under consideration, it is precisely the
potential for region III of the current problem. This expression, as
applied to the present case, is

Cos-l 13Y2

1

J

Xppyp
(m -1-~6)e-ifi(x2-~)f

X2-.5

[
Cos $Z(X2-

Eo 1
~)SiJl e de d~

o

where

(15)

Y2’Y~-Y

* (This expression for the potential applies to those points of.region III
that are on the wing as well as those on the control surface.)
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a

The first term on the right-hand side of equation (l?) is the sum
of the potentials @b and #& of the ‘tpurelysupersonic region>

region II, given in expanded form in equations (7)and (8). The calcula- “
tion, therefore, of only the second term is necessary. After expansion
of eqmtion (15) in a power series to the fifth power of ?b,the velocity
potentials for-region 111 can be expressed as -

r

[( )$%’-? *+~sin-l>
!3Y2

fl(x2) +~cosh-l - f~(yz) -
PIY21

*-’3(X2’Y21
r

( )PY2 13Y2
:+ + sin-l — f2(x2) +7cosh-1 ax2f3(Y2) + f4(Y2)X2

I IIPY2

where

(17)

(18)

(19)
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and

~3(x2~Y2)=

A4(X2,Y2) =

Z?xiii
2(B2+ 3)

i$x22

- -(*2 + 17) -

iZb&y22
—+— (2p2 - 1) -
2

1=2 7=2

-4 3 -422

32!34 + 40P2 + 45’)- ‘“;~42 ml - m) +
9W4

itix24
ZB4 + 29@32 i-453)i-

i$x2%%22
(1692- @2 - ag) i-

43~OM4

ih5p4y24
(*4 - %2 + 3)

1O$3OM4

iik2
-2 2

1
~2p2Y22

-+
2

~+=(2P2 +5) - 2M2 (=2 + 1) -. 4&2

isx23 i#x2$ pypp
(4p2+ a) - (ll@2- 10) -

72QM2 7ZQM2

(20)

-444

3434 + 4p2 - 1) (a)
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Other regions.- Two other
region is formed when the Mach
intersects the inbosrd edge of
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b
types of regions sre possible. One
line from the inboard edge of one aileron
the aileron on the opposite side of the

.-
a:

wing. This type is not o: practical interest, howe~r, since the inter-
ference effects of the fuselage between the ailerons would be of far
greater importance. The other type of region, formed when the Mach Lines
from the tips of one aileron intersect on the aileron, presents no diffi-
cultiess. The potential in this type region is simply the sum of the
expressions for the potential in regions I and III minus the potential
for region 11. This parallels directly the treatment of region T3 in

reference 1.

Expressions for the velocity potentials due to aileron motion have
been provided for all regions in the field of flow of”the aileron (see
eqs. (7), (8),(~), (12),(16),and (17)). The aforementioned eq~tions
sre in terms of known integrable functions and, as subsequently shown
in the following section, yield force and.moment coefficients for a
chordwise strip that are valid for sufficient~ small values of the
parameter ‘-G.

Section Forces and Moments

Expressions for section force and moment coefficients for any
station along the span are derived. In deriviw these expressions the
variables x, y, ~, ~d xl are employed as nondimensional quantities

obtained by dividing the vsriables previously used by the wing chord 2b.
The local perturbation pressure difference between the upper and lower
surfaces of the wing may be written as

(22)

where p is the density of the medium. The section force (positive
downward) on the ting is therefore

—

—

I
1

P=2b 4dx
o

(23)



NACATN 36~ 15

The section moments (positive leading edge up) acting on the wing section
about the wing axis of rotation X. and on the aileron section about the

hinge point xl are, respectively,

J
1

Mb = 4b2 (x - X1)4 dx
xl

(24)

(25)

After substituting equations (3) and (22) into equations (23), (24),
and (~) and performing the indicated integrations, the results may be
written as

r

1

1
+iM2) +a(M3+iM4) +~(~+il%) = 2P@~

}
(26)

Mb=-
[

kpb2V2k2 ;(N1

= 2(1 - xl)2p@b2ch

1+ iN2) + a(N3 + iN4) + @N~ -I-iN6)

terms Li, I%, and Ni (where i = 1, 2, . . . 6) sre the in-phase

out-of-phase components of the force and moment coefficients; the

The

and
odd-number subscripts sre the in-phase components and the even-number
subscripts are the out-of-phase components. Terms with subscripts 1
and 2 sre associated only with vertical translations of the wing.
Terms with subscripts 3 and 4 are associated with angular position
and rotation of the wing about x = ~. fidices 5 and 6 “are associ-

ated with the angulsr position and rotation of the control surface
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*

about x = -xl. As may be seen irom equation (26), the forms Li, Mi,

and N;, which have been used in studies of unsteady flow, can be readily .
conver~ed to the conventional section coefficients for

moment ~, smd aileron hinge Dment ch. -.

Expressions for the coefficients of equation (26)
vsrious regions of the wing and aileron. Coefficients
wing motion, namely Ll, L2, L3} L4, MI, M2,. M3)

given to the third power of the frequency parsmeter Z
and were extended to the seventh power in reference 4.

lift C2, pitchiti

differ for the
associated with ..
and M4, were

in reference 1
For completeness,

however, these expressions are re~eated to the..fifthpower of fi in the___ _______
appendix to this paper.

The remaining coefficients can be divided into two groups: (1) those
which show the effect of wing motions h and a upon the aileron
moment Ma, nsmel.y Nl, N2,

‘3’
and N4, and (2) the aileron section

coefficientsdue to the aileron potentials @b and @&, nsmely L5, L6,

~, !ti6,N5, and N6. Expressions for the coefficients in each of these —

g~oups for ~he various regions of the wing-aileron combi~tion till now
be given.

.

Aileron coefficients Nl, N2, N3, N4 due to wing motion.- For

the section coefficients Nl, N2, N3, smd N4, the aileron iS ditided *

into three regions (fig. 2). Region 1 includes all sections outboard
of the point where the wing-tip Mach line crosses the aileron hinge,
region 3 comprises all sections inboard of the point where this Mach
line crosses the trailing edge, and region 2 ~ncludes all intermediate
sections. The coefficients can be expressed as follows:

N2 = N2’ +M2’ - 2X1L2’

(2’7)

where the coefficients Mil ~d Lil (i = 1, 2, 3, 4) refer to the

wing coefficients given h the appendix for ~ = O.
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.

Forregionl where O <y<xl/p, the coefficients of equation (27)

are calculated by using the expressions for the wing coefficients pre-
sented in the appem (eqs. (Al) and (A.2))for the region O < y< l/~
and are given as the fol.lotiw expression:

I

~3 yxl+q’-
[ 2x~2(@4- 42+3)F4° +11.0f14XlF5° -

~

}

(24434+ efla- l)F6’j

N31 =M3’

[

4 <XIF1”- 2xlL3’+— a13
$X k2

- F2”)_y?l!,

X12
—F2’’(@4+ 3~2-1) -=x1(6p2+5) +M(ap4+b2+ 3)+p4

$2 %4

[=X14F2”(P%5) +16#X1%3” - 2x12F4”(40& !# - 5p2+ 3)+-8

1]@4XlF5”(15@2+ 13)- (S6B6+ *4 + ~2 -.1)F6°

N4’= ~’

(
[

.& &_ @@y’ -- 2X1L4’+Px ~% X1F2’’(332+1)”+(2$2+l)F3’ji-

5&2”(294 -,2 +1) - =@#F3” +xlF4”(a3@4+ 7~2-l)-

@k3
2P%F5’’(ZA3] --.--[i&l?2’’(#+7) +loxpF4’’(@c4#4+

3$2- 3)- 36Q36X12F5°+ 3X1F6”(I@36+64p4 - nfj2+ 3)-

}

@b’T’’(2@2+19~ .

(28)
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.

f

xl
Fn” =

,r
~n-l ~in-l ~dx

o x

.

.

For region 2 where xl/~ < y < l/~, the terms in eqyation (27) are

calculated by again using the expressions for_the wing coefficients pre-
sented in the appendix (eqs. (Al) and (A2)) for the region O < y<-l/~
and yield the following expressions:

N1‘ 4P2+ 5M*2xi5

15p7

%2 M2kx14 ~4&16
N2*=—-— (4p2 +7) ‘-

~k q35 + 3q9

4X12 xl 26
M% xl

N3‘ = M3’ - 2X1L3’+—- —(pp + 3) + +44 + 35P + 35)
~k2 6p5 lmi

!={4p4 + 49p2+ 63)
630pll .

(3)

For region 3 where l/p< y, the terms of equation (2’j’)are obtained
by using the wing coefficients in the appendix (eqs. (A3) and (A4)) for
the region y> l/~ and equation (29).
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Aileron coefficients L5, L6, 115, M6,
‘5’ ‘6

due to aileron

motion.-

%, N5,
trailing

For

Xj=l-.

{%$ %~+””
+~@4~%2-1) -9##2+5) +=&>;’’(B’+5) +12#Y&3:” -

The expressions for the aileron coefficients L5, L6, 115,

smd N6 depend upon which region (see fig. 1) contains the

edge of the section.

a section partly in region I, that is O < y< x3/p (where

xl), the coefficients are

1]xfk’ ‘ ‘(4a# + w~ - %3’+ 3) + zA5’ ‘ ‘(1%3’+ v)

[[
b &yltl,

‘“~k ][
-*%2+1) +~%2P211W4-B 2+1) -*~5111+ FhII:(m$4+m2-lj -

%

* } #?2’’’(P2+T) +mx#k’’’ (@6 -4L14+=A’ -3) -’40B~5’” +F6’” (l@6 + 6%4 - I@+ 3)]
** 1

%h {[Lfi%q%=’”-“Ekp’ (=2 + ‘)F3’”1 +=#[%~’’’’@J’ - 82+ 1) - -%*3’” + @5’’:@’2+ si -

*[j+” ‘‘ (!32+7) +%3%4’’’ (e34P4+3 @3@’- 3) -m~3~5’” +’$47’”
}

(’41’+1-9j+’(xl-%)%



m

where

For a section

these coefficients

Fn !l!=

entirely

become

J’ Ir‘3 Xn.l sin-l & &f

o x

within region II, that is

NACATN 3644

_ ‘3
k%% 5

L5 ZP2 +3) +-(4P4+35P2 +35)

~k2 395 6Qp9

~~ 4
‘%&36 (4P4+ 49P2+ 63)

X2

Lfj‘ %P2 - 1) +----%p2+ 5)”- —
k~3 6p7 l&)p~-

.’32
X4
#F+3) +

k%% 6
M5 ~(4~4 + 3~~2 -1-35) + 2(x1- ~)L5

~k2 36p9

- ‘4k%37ppp4+49p2+ 63) +4X 3 @f& 5
M6=+&- 1) +~(p2+5)

3kP3 15p7 105$11

2(X1 - XO)L6

N5 = ~ - 2(x1 - XO)L5

N6=M6- 2(X1 - %)%

(31)
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‘3For a section partly within region III, that is yl - — < y < yl + 3,
P P

these coefficients become

[

‘3 X33
=--@ -# P2 +3)+ 3(4p4+,,p2+3,](; +:sti-.3)+

k%% 5
L5

f3fJ9

r
Y2

[

‘3 1 Y22 a2k2y22x32
cosh-l — — -

Z- ~y2 k2
- ~(6p2 ,+ 5) +

~32 ‘

M2&y24

] Yim&:+4,:3,+
(15p2 + 13) +

m

M2k?x 2
~(lop6 - .22& + 55p2 + 135) -

M2k~22 1(265$6-i-83j34- ~p2 + ~)
lap 8 l&&

(32a)

[
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lmp 8
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N~= M5 - 2(x1 - x&5 (32e)

N6=M6- 2(x~ - XO)L6 (3=)

Equations (32) apply to all sections of region 111 - those sections on
the wing as well as those on the aileron.

The case of a section in a region within the Mach cones from both

‘3 ‘3aileron-leading-edgetips yl - — <y <—, which is formed when the
$ @

Mach lines intersect on the aileron, can be treated with the expressions
provided in this section. The coefficients for such a section are obtained
by adding the corresponding expressions of equations (30) and (32) and
subtracting the pertinent expression of equations (31).

Total Forces and Moments

In order to gain some insight into overall effects of aileron loca-
tion and aspect ratio, expressions for total forces and moments are pro-
vided. The total lift, total wing moment, and total aileron moment,
respectively, can be written as

L
,

+ tip)+ C@3 + iF14)+ 1:b(fi~+iii6)
11-

where A is the ting aspect ratio. Expressions for the coefficients il,

Z2, %3, 7!4, Fil, nz, ii3,and Ii4 in eqyations (33) sre given to t&–

seventh power of the frequency in reference 4. For completeness they are
provided to the fifth power of the frequency in the appendix.
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The other coefficients associated with wing motion me
.

[

2X13 M2k?x15
— - —(4132 + 5)1[.-!L<(P2 + @

M%%16 ~
Ill= - —(p +

3P3 15$7 3Y~ 2@ l@

18p2i-8) i-fil’- 2(x1 - XC&’ (34a)

[

-,
X12

1[

M?!fx15~M?kx#+ M4@x16{~4p2~ T, b ’13 ,—(P -t4) +
i2= —-— .—— -

~k 2$5 3@ ~lli% 5P6

1 2(X1 - X&t (34b)2M4k~17 4 + -2 + 1.6) + fi2’-.
—(9 .—

lo5plo

[

X12 M2k?x16
*P2 + 3) +

‘“][

X13
:3= —- —(4B4 + 35p2 i-35). - L — -

~k2 i&p9 3Y~ #k2

X15 . 2M2k%c 7 I
.

7(3P2 -1-4) + +5P4 + ml% + 16) + i3’ - 2(X1 - xo)(i3’ -1-
lo5plo

2x&’) - 2xJil - m’) .- (34C)
—-
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2X13 2 M%q5 2

1

Mh&17(4p4 ~ 49P% 63) +
ii4 = —(P -1)+ —(p +5)-—

3~3k 15p7 63Q911

[

—(B2+ 2)+&; ““ “’

X14 4kM%16
b—— -
3Y1 j34k 1.

—(3134 + 16P2 + 16) +
15138

i4’ - 2(X1 - %)64’ + 2x&) - 2x.Jii2- Iia’) (3W * -.

.
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.

The primed coefficients employed in eqmtions (34) are obtained by
. replacing the wing aspect ratio A with yl/b in the correspond

unprimed coefficients in equations (A7) and (A@ of the appendix.
The

remaining coefficients, which are associated with the total forces and

moments on the aileron, are
)

.

[

k%% 6
G5 = ]-~~+$*-

‘34(P2+ 3) + d(@ + 35P2+ 35)’32 _

~k2 *5 36P9

4X35
43F -1-4) +

4k%% 7 1~(5p4+ mp2+ 16) + 2(x1 - X&

5!36 35P10

.
2(X1 - XJ6

(35)
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In equations (35) the expression within-the first set of brackets in
each equation represents the component of the coefficient,dueto two- ●

dimensional flow, and the second term provides the corrections for edge
effects. The correction for the inbeard or s~aled edge is 2/fi times
that for the outboard edge of the aileron. This serves as a check,on
the calculations, inasmuch as it is in accor~with the observations of
references and 9. Equations (35) do not iiicludethe contribution of
the part of region III that is off the aileron. If this contribution
were included, thereby providing overall.total coefficients for the wing- “-
aileron combination;the correction for the inboard edge would vsmish.
For an aileron whose outboard as well as inboard edge can be considered

sealed, the expression 1 +.: in equations ‘(35)should be replaced
SC

by 4/x.

CALCULATIONS AND DISCUSSION

SpanWise Aerodynamic Effects

To give some indication as to the general nature of the spanwise A“

distribution of the different components of the lift and moment coeffi-
cients introduced by the presence of a control surface, these components
were evaluated for a given set of conditions at different spanwise loca- .

tions. This spanwise variation is illustrate. in.figure 3 for an aileron,
with a chord one-h%lf of the wing chord and a span one-fourth of the wing
span, mounted adjacent to the wing tip on a wing of aspect ratio 4 at a
Mach number of 1.3 and a reduced frequency k of 1/9. Figure 3(a) pre-
sents the spanwise distribution of the components which contribute to
the wing lift force and moment, and figure 3(b) presents the distribution
of the components contributing to the aileron hinge moment. Two-
dimensional values of the coefficients are represented by dashed lines.
For the aforementioned set of conditions, the Mach lines from the aileron
tips intersect on the aileron. (For stations partly within the region
formed by these intersectingMach lines, see the’discussion following
eqs. (32)).

Application to Flutter

The applicationof the section force and moment coefficients devel-
oped in this paper to some particular exsmples of the flutter of a
finite-span wing with partial-span control stifaces is considered of
interest. A broad systematic study, however,”-suchas that of reference 10

d

which employed two-dimensionalaeroeic theory, is beyond the scope of .
the present paper. *
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The particular
aspect ratio 4 at a

exsmples deal with a
Mach number of 1.3.
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rectangular wing-aileron of
This wing, without an aileron,

has been analyzed for flutter and the flutter characteristics have been
calculated and compared with experiment at M = 1.3 in reference Il.,
where two-dimensional flow coefficientswere employed, and in refer-
ence 12, where finite-span coefficients were employed (refer to model A-1
results of the reference papers). The following pertinent psmmneters of
reference 11 are used:

Aspectratio, A. . . . . . . . . . ... . . . . . . . . . . . . . 4.0
Elastic-axis location, ~, referred to 2b ... . . . . . . . . . . 0.413
Center-of-gravity location of wing-aileron combination ~,

measured from elastic sxi.sin semichords . . . . . . . ; . . . o.1~

Radius of ~ation of wing-aileron combination, ra = (~;

referredto~ . . . . . . . . . . . . . . . . . . . . . . . . 0.28

First natural frequency in bending, ~, radians/see . . . . . . . 838

First natural frequency in torsion, ~, radians/see . . . . . . . 1,747

Densitypsrameter,l/K=m/fipb2 . . . . . . . . . . . . . . . . . 64.9

The present study considers the wing described above to have an
aileron, hinged about its leading edge, tith a chord “one-halfthe wing
chord and a span one-fourth the wing span. The aileron is considered
rigid but spring restrained at the hinge. The effect upon flutter of
varying the spanwise location of this aileron is examined for two mass-
balance conditions. The aileron psmmeters assumed for this study are

yl/b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Aileron-hinge location, xl, referred to 2b . . . . . . . .‘. . . . 0.5

Reduced aileron center-of-gratitylocation, ~, measured frOm

hinge inwingsemichords . . . . . . . . . . . . . . . . . 0.2and0

y/Reduced radius of gyration of aileron, r~ = Ip’mb2J

referredtoxl. . . . . . . . . . . . . . . . . ● . . 0.125 andO.1

Flutter analyses for three degrees of freedom in three-dimensional
flow.- Three degrees of freedom - namely, wing bending, wing toreion,
and aileron rotation - are involved in the present study. By the method
given in chapter IX of reference 13, the flutter determinantal equation
for the three degrees of freedom involved may be written as

I



28
NACATN %W

= o (36)

where the determimt elements are

K37)
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and where 21 and 22 represent, respectively, the inboud and outboard

edges of the afieron, Zh> Zcu ~ represent, respectively, the mode

shapes in wing bending, wing torsion, end aileron rotation, and the coeffi-
cients Li, Mi, Ni are defined in equation (26). In this analysis the

wing udes Zh and & were assumedto be the uncoupled first bending and
first torsion modes of a uniform cantilever beam, while the &ileron mode
was assumed to be unity. The aero@amic integrals required in these equa-
tions are obtained by numerical integration employing the basic method shown
in appemtk B of reference 4.

After substitution of these integrals and parameters into the deter-
minant elements, the eqxations are solved, as in chapter XIII of refer-
ence 13, at several values of the reduced frequency k for the,flutter
frequency o and aileron frequency ~. The results are presented as

plots of the psrsmeter b~c against the natural frequency ratio ~/~

in figures 4 and 5. The psrsmeter b~c is employed here as in refer-

ence 10, since it is preferable in a compressibility study rather than
the velocity parsmeter normally used in incompressible flow. The choice
of ~ rather than ~ in this psrameter is purely arbitrsry since in

this analysis ~~~ is constant.

Figure 4 illustrates the results of the flutter analysis for the
mass-balance condition defined by the parmeters xp = 0.2 ~d r52 = 0.~5

implying a relatively rearward aileron center-of-gravity location. The
analysis was performed with the aileron in three spanwise locations on
the wing, as shown in figure 4. In f-e k(a) the aileron is in the
inbosrd position siljacentto the wing center line. ,Infigure k(b) the
aileron is located midway between the wing center line and the wing tip
and in figure 4(c), adjacent to the wing tip.

—

TWO curves”appear on these plots and regions of instability relative
to each curve axe showm. The lower curve extends through the entire
range of the frequency ratio ~/~, sad is associated with a mode that

is predominsn~ly a combination of wing bending smd wing torsion..AS qj

becomes infinite, the case of coupled wing bending torsion is approached;
the value of tic approached asymptotically is indicated by the short-
dashed line and corresponds to the result from reference 12. As %

decreases the value of b~/c increases sli@tly. At a sufficiently low’

value of ~ a point is reached where the region of instability associated

with the upper curve appears. Since the stiffness b~c associated with

this upper curve is higher than that associated wtth the lower curve, the
mode .associ.atedwith the upper curve is the critical one for low values
of the frequency parsmeter ~/~.
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In figure & part6 of the curvez are esthated as indicated by the
4

long-dashed lines. --Overthe estimated pmtion of the curve the reduced-
frequency parsmeter k is greater than 0.25 and beyond thie value the .
aerodynamic derivatives developed in the present paper become inadequate.

To provide some indication of the effects of mass balance, the con-
figurations of figures k(b) and 4(c) are sgain analyzed for the mass-—
balance condition defined by the parameters

-% =
which places the aileron center of gravity at the
are shown in figure 5 where only the cases of the
location (fig. 5(a)) and at the outboard location
considered.

For fj.gure5(a) the maximum val.ueof %/%

is unknown and hence this curve is not closed. A
uxes 5(b) (balanced aileron) and 4(c) (unbalanced

O and rp2= 0.100,

hinge. These results
aileron at the midspan
(fig. >(b)) are

for the upper curve —
cmparison of fig-
aileron).shows that

the upper curve i: extended to a much higher value of ~/~ in fig-

ure 5(b), and indicates that a stiffer (higher frequency) aileron is
required for stability. This ftiding is ir”accordancewith an observa-
tion of reference==10that mass ba3ance may have an adverse effect for
low supersonicMach numbers.

Two-degree-of-freedomsubcsses.- It is often deemed practical in
exsmining the problem of flutter for a multi-degree-of-freedomconfigura-
tion to consider pertinent subcases under tie assumption that the char-
acteristics of the solution to the multide@ee-of-freedom problem will
manifest themseltis in the solutions to the pertinent subcases at some
saving in labor. TO test this assumption the subcases of the present’
three-degree-of-freedomproblem which involve aileron motion - that is,
the wing-bend--aileron-rotation case and the wing-torsion-aileron-
rotation case - have been considered.

.-

The flutter determinants are obtained for the bending-aileron case
by eliminating the row .md column associated with wing torsion from the
tbree-degree-of-freedomflutter determinants emplo~d,in the previous
sections. Siml@ly for.the torsion-aileron case, the row and column
associated with wing bending sre eliminated. The results of this study
are shown in figures 6 and T.

The results obtatied by using the finite-span coefficients of the
present paper for both mass-balance condit~ofisare presented for the
wing-bending-aileron subcase in figure 6 and for the wing-torsion—
aileron subcase @ figure 7. The curves in figure 6 have the sane form
as the upper curves in figures 4 and ~ and, about the ssme critical
ranges of b~/c . For the aileron at an otitbosxdlocation a ccnnparison

.

-.

._..

.-

>–

—
.
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of figure 6(c) with figures 4(c) smd
observation; namely, that, when only

31

~(b) protides a somewhat interesting
two degrees of freedom are consid-

ered, the critical frequency ratio-for the first mass-balance condition
is increased, whereas for the second or mass-balanced condition the
critical frequency seems to be slightly decreased.

In figure 7 are presentedthe results for the torsion-aileron case.
No region of instability was detected for the aileron in the inboard case.
Therefore, results sre presented only for the midspan location (fig. 7(a))
and outbosrd location (fig. 7(b)). The curves in these figures appear
to correspond in formto the lower curves in figures 4 and 5. Whereas
mass balancing the aileron did not appear to materially affect this
stability boundary when three degrees of freedom were considered, for
the mode under consideration a mass-balance control surface would seem
detrimental from a flutter standpoint when ody two degrees of freedom
are considered.

CONCLUDING RFMARKS

The present paper has extended the treatment of NACA Rep. 1028
and NACA TN 5076for rectangular wfngs in supersonic flow to include a
third degree of freedom, ~ly Ptii~-sP~ aileron rotation” ~res-
sions for the velocity potential and consequent section forces md moments
for the aileron have been provided to the fifth power of a frequency
parameter. In addition total force and moment coefficients have been
obtained.

The section coefficients were applied to a psx’titularflutter study
which attempted to compare:

(a) The flutter characteristics
locations

(b) The flutter characteristics
ailerons

for the aileron in various spanwise

of mass-balanced and mass-unbalanced

(c) The fhrbter properties as determined from a three-degree-of-
freedom problem with properties obtained from the two-degree-
of-freedom subcases

Beca~e of the rather llmited nature of this study (for example, no Mach
number investigationwas made, only two mass-balance conditions were
employed, and only one density ratio was mployed), the results of this
investigation were not intended to be construed as conclusive but should
aid in suggesting topics for future investigation.
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With regard to the spanwise location of the aileron upon the flutter
characteristicsof the wing, no conclusion can readily be drawn other .

than that the inboard location of the aihron is best from a flutter
standpoint. The possible detrhnental effect of applying mass “balance
to the control surface in this Mach number region, shown<in NACATN 31@,
was also indicated in this study, especially where three degrees of
freedom were considered. Where finite-span consi&rations were applied
to the two-degree-of-freedomsubcase6, mass balance appeared to be ben-
eficial from a flutter standpoint for the wing-bending-aileron case
but not for the wing-torsion-aileron case. The results of the two-
degree-of-freedomsubcases appeared to reflect the flutter properties
obtained from the three-degree-of-freetimproblem.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., Februsry 9, 1956.
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APPENDIX A

COEFFICIENTS ASSOCIA!I’EDWITH WING MOTION

Most of the expressions in this appendix have been taken from ref-
erence 4, where they were presented as a power series containing terms
up to the seventh power of the frequency psmmeter ?b. Inasmuch as the
present paper considers expasions to the fifth power of the frequency
parameter, the expressions of reference 4 me accordingly abridged. These
abridged expressions are repeated here for the sake of completeness.

Section Coefficients Associated With Wing Motion

For sections between the wing tip
edge Mach line intersects the traiMng
coefficients are:

and the point where
edge, O< y< l/~,

the leadlng-
the section

%5=

.

%=

.

(&g16 + 22s4 - %32+ 3)?4 -!- *4(1X2+ 13)=5 1} .- %%

L3’--1’

[

k ‘~~1 - (~2+‘)’21+*F’*k -‘2+1)” -2%4’3+‘a’’+’” -‘)”1-w p%[

&3
[5(~2+7)%+ @@6 - kP4+3i32- 3)?4 - ZQ$Y5+ (16@6+64i3k -

}

YJ&3)~6] -%%
~

4’ -%%’

(N)

.

.
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{[~.k L?2+M3(@-l)52- (42 + I)i] + ~~2 - 2(E94 - @2+ 3)% + (2494 + %2 - 1)?6]
~k ?4

- M2’ - %+’

.

{[4 ‘@l- (@’+’)’J’*k@’-~2+1)’2-@w2@J2””J-*b~2’’)’2+~“~ ~2k

5(%6- %4+%2 -
}

3)% - $w%~ + 2i342E# + 19)?7] - %(%+4+ %L2,1

“%’- 2Xo(ii2’ + L4: - 2XOL2’)

In equations (A2)

Fn = Fn(ljy)

-%+2

.

*

(A2)

4

.

For sections inboard of the oint where the leading-edge Mach line
intersects the trailing edge, ?1 ~ < y, the section coefficients are:

—

I

%=~$2-3) +@$2+5)-m.$W4 +49P2+63)-U=U’ -U’
p% 6$7

I .
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.

.

.

= M2’ - &&’

35

\

M3=~. $(P2 + 3) + M-(4P4 + 3%2 + 35)
~~2

I

- 2xo(M1 + L3 -I-~LI) (A4)

= M3’ - 2xo(MI’ + L3’ - ~L1’)

ML . -&fj2 - 1) + kM2k 2 M4k3
~(~ + 5) - ~-~4P4 + 49P2+ 63) -3P3k

2x0(M2+ L4 +

= M!K‘ - ~(M2f

Total Coefficients Associated With Wing Motion

E@ressiom for the coefficients of equations (33) not providedin
the body of the paper sre as fo~ows:

.

.
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Figure 1.- Sketch illustrating coordinate system and degrees of freedom
of rectangular ting-aileron configuration.
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Figoxe 2.- The regiona of the aileron @inent to the calculationof sec-
tion coefficients Nl, N2, N~, and N4.
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Figure 3.- Spantise distribution of components of lift-force and moment
coefficients introduced by the presence of a control surface. M = 1.3;
k = 1/9; A = k; and y@ = 2.
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Figure 3.- Concluded.
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(a) Aileronat inboard location.
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(b) Aileronat midspan location.
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(c) Aileron at outboard location.

Figure 4.- Flutter parameter WC plotted against frequency ratio

uyj/~ for various aileron locations. Three degrees of freedom;

M= 1.3; Xp = 0.2; r~2 = 0.125. (Other parameters for wing and

aileron are given in the text.)
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(a) Aileron at midspan location.
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(b) Aileron at outboard location.

Figure 5.- Flutter parameter ~/c plotted against frequency ratio

~/~ for various aileron locations. Three degrees of freedom;

M= 1.3; XP = O; rP2 = 0.100. (Other parameters for wing and aileron

are given in the text.)
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(b) Aileron at midspan location.
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(c) Aileron at outboard location.
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Figure 6.- Flutter parameter ~/c plotted against frequency ratio

%/% for wing-bending-aileron case employing finite-span theory.

M= 1.3.
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(a) Aileron at midspan location.
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Figure 7.- Flutter parameter ~.c plotted against frequency ratio

%/% for wing-torsion-aileron rotation case employing finite-span
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